Analyze survey data from 300 participants on student anxiety levels. Help me: 1) Clean and prepare data (handle missing values, outliers), 2) Run appropriate statistical tests (t-tests, ANOVA, chi-square), 3) Check assumptions for each test, 4) Calculate effect sizes and confidence intervals, 5) Create publication-ready tables in APA format. Use R or Python.

Prompt
Analyze survey data from 300 participants on student anxiety levels. Help me: 1) Clean and prepare data (handle missing values, outliers), 2) Run appropriate statistical tests (t-tests, ANOVA, chi-square), 3) Check assumptions for each test, 4) Calculate effect sizes and confidence intervals, 5) Create publication-ready tables in APA format. Use R or Python.
ChatGPTOpenAI
Analyze survey data from 300 participants on student anxiety levels. Help me: 1) Clean and prepare data (handle missing values, outliers), 2) Run appropriate statistical tests (t-tests, ANOVA, chi-square), 3) Check assumptions for each test, 4) Calculate effect sizes and confidence intervals, 5) Create publication-ready tables in APA format. Use R or Python.

Analyzing survey data on student anxiety levels involves several detailed steps. Below, I will outline a procedure using Python, including data cleaning, statistical tests, assumption checks, effect size calculations, and creation of APA-style tables. You'll need to adjust certain parts based on your specific data and research questions.

Step 1: Clean and Prepare Data

First, we need to load and clean the data. Let's assume your data is in a CSV format. We'll use pandas for data manipulation.

import pandas as pd
import numpy as np

# Load the dataset
data = pd.read_csv("student_anxiety_data.csv")

# Display the first few rows
print(data.head())

# Check for missing values
print(data.isnull().sum())

# Handle missing values (e.g., drop or fill)
data.fillna(data.mean(), inplace=True) # Example: fill missing numerical values with the mean
# Alternatively, you might drop missing rows
# data.dropna(inplace=True)

# Identify outliers (using IQR method for example)
Q1 = data['anxiety_level'].quantile(0.25)
Q3 = data['anxiety_level'].quantile(0.75)
IQR = Q3 - Q1

# Define outlier bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
data = data[(data['anxiety_level'] >= lower_bound) & (data['anxiety_level'] <= upper_bound)]

# Check cleaned data
print(data.describe())

Step 2: Run Appropriate Statistical Tests

Now, assuming you have a categorical variable (e.g., 'group' with levels 'A' and 'B') and a continuous variable (e.g., anxiety levels).

T-Test

from scipy import stats

group_a = data[data['group'] == 'A']['anxiety_level']
group_b = data[data['group'] == 'B']['anxiety_level']

t_stat, p_value = stats.ttest_ind(group_a, group_b)
print("T-test result: t-statistic =", t_stat, "; p-value =", p_value)

ANOVA (if there are more than two groups)

anova_result = stats.f_oneway(*(data[data['group'] == group]['anxiety_level'] for group in data['group'].unique()))
print("ANOVA result: F-statistic =", anova_result.statistic, "; p-value =", anova_result.pvalue)

Chi-Square Test

Assuming you have categorical data on anxiety levels, you could run a chi-square test as follows:

contingency_table = pd.crosstab(data['anxiety_category'], data['group'])
chi2, p, dof, expected = stats.chi2_contingency(contingency_table)
print("Chi-Square Test: chi2 =", chi2, "; p-value =", p)

Step 3: Check Assumptions

For t-tests and ANOVA:

  • Normality: Use the Shapiro-Wilk test.

  • Equality of Variances: Use Levene’s Test.


# Normality test
shapiro_a = stats.shapiro(group_a)
shapiro_b = stats.shapiro(group_b)
print("Shapiro-Wilk test for group A:", shapiro_a)
print("Shapiro-Wilk test for group B:", shapiro_b)

# Levene's test
levene_test = stats.levene(group_a, group_b)
print("Levene's test result:", levene_test)

For Chi-Square, you should have a sufficient sample size (>5 in each category).

Step 4: Calculate Effect Sizes and Confidence Intervals

For t-tests, use Cohen's d; for ANOVA, use eta squared; and for chi-square, use Cramér's V.

# Cohen's d for t-test
cohen_d = (np.mean(group_a) - np.mean(group_b)) / np.sqrt((np.std(group_a)**2 + np.std(group_b)**2) / 2)
print("Cohen's d:", cohen_d)

# Confidence intervals
conf_int_a = stats.t.interval(0.95, len(group_a)-1, loc=np.mean(group_a), scale=stats.sem(group_a))
conf_int_b = stats.t.interval(0.95, len(group_b)-1, loc=np.mean(group_b), scale=stats.sem(group_b))
print("95% CI for Group A:", conf_int_a)
print("95% CI for Group B:", conf_int_b)

Step 5: Create APA Style Tables

We can use pandas with dataframe.to_latex() for publication-ready tables.

# Create a summary table
summary_table = pd.DataFrame({
'Group': ['A', 'B'],
'Mean Anxiety Level': [np.mean(group_a), np.mean(group_b)],
'Standard Deviation': [np.std(group_a), np.std(group_b)],
'Sample Size': [len(group_a), len(group_b)],
'Cohen\'s d': [cohen_d, ''], # This applies only to comparison
})

# Save to LaTeX
summary_table.to_latex('summary_table.tex', index=False)

Replace paths and variable names according to your specific dataset.

Note:


  • Be sure to adjust the assumptions checks, effect size calculations, and table formats according to your actual research question.

  • If you prefer R instead of Python, similar methodologies apply, using dplyr, ggplot2, stats, and knitr packages for data management and reporting.

{DateTime.UtcNow:HH:mm}
GrokxAI
Analyze survey data from 300 participants on student anxiety levels. Help me: 1) Clean and prepare data (handle missing values, outliers), 2) Run appropriate statistical tests (t-tests, ANOVA, chi-square), 3) Check assumptions for each test, 4) Calculate effect sizes and confidence intervals, 5) Create publication-ready tables in APA format. Use R or Python.

I'll help you analyze the survey data on student anxiety levels using Python. Since you haven't provided the raw data, I'll first create a realistic dataset based on common anxiety survey scenarios and then perform a complete analysis. Here's a comprehensive solution:

```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from scipy.stats import shapiro, levene
import statsmodels.api as sm
from statsmodels.stats.anova import anova_lm
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from statsmodels.formula.api import ols
import warnings
warnings.filterwarnings('ignore')

Set style for publication-ready plots


plt.style.use('seaborn-v0_8')
sns.set_palette("colorblind")

Create realistic survey data for 300 participants


np.random.seed(42) # For reproducibility

n = 300
data = {
'participant_id': range(1, n+1),
'age': np.random.normal(20, 2, n).astype(int),
'gender': np.random.choice(['Male', 'Female', 'Non-binary'], n, p=[0.48, 0.48, 0.04]),
'year': np.random.choice(['Freshman', 'Sophomore', 'Junior', 'Senior'], n, p=[0.25, 0.25, 0.25, 0.25]),
'gpa': np.clip(np.random.normal(3.2, 0.5, n), 0, 4),

# Anxiety measures (GAD-7 scale: 0-21, higher = more anxiety)
'anxiety_score': np.random.normal(10, 4, n),
'sleep_quality': np.random.choice([1, 2, 3, 4, 5], n, p=[0.1, 0.15, 0.3, 0.25, 0.2]), # 1=poor, 5=excellent

# Categorical variables for additional analysis
'major_stress': np.random.choice(['Low', 'Moderate', 'High'], n, p=[0.3, 0.4, 0.3]),
'academic_load': np.random.choice(['Light', 'Moderate', 'Heavy'], n, p=[0.2, 0.5, 0.3]),
'social_support': np.random.choice(['Low', 'Moderate', 'High'], n, p=[0.25, 0.5, 0.25])
}

Create the dataset


df = pd.DataFrame(data)

Introduce some realistic missing values and outliers


Missing data (5% missing completely at random)


mask_missing = np.random.random(n) < 0.05
df.loc[maskmissing, ['anxietyscore', 'gpa', 'sleep_quality']] = np.nan

Add some outliers for anxiety scores (beyond reasonable range)


outlier_indices = np.random.choice(df.index, 15, replace=False)
df.loc[outlierindices[:5], 'anxietyscore'] = np.random.uniform(25, 35, 5) # High outliers
df.loc[outlierindices[5:10], 'anxietyscore'] = np.random.uniform(-5, -1, 5) # Low outliers

print("Dataset created with 300 participants")
print(f"Initial shape: {df.shape}")
print("\nFirst few rows:")
print(df.head())

=============================================================================


1. DATA CLEANING AND PREPARATION


=============================================================================

def clean_data(df):
"""Clean and prepare the dataset"""
df_clean = df.copy()

print("\n" + "="*60)
print("1. DATA CLEANING AND PREPARATION")
print("="*60)

# Remove duplicate participants
initialn = len(dfclean)
dfclean = dfclean.dropduplicates(subset=['participantid'], keep='first')
print(f"Removed {initialn - len(dfclean)} duplicates")

# Handle outliers in anxiety scores using IQR method
Q1 = dfclean['anxietyscore'].quantile(0.25)
Q3 = dfclean['anxietyscore'].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Clip outliers instead of removing (more conservative)
noutliersbefore = ((dfclean['anxietyscore'] < lower_bound) |
(dfclean['anxietyscore'] > upper_bound)).sum()

dfclean['anxietyscore'] = dfclean['anxietyscore'].clip(lower=0, upper=21) # GAD-7 max=21
dfclean['anxietyscore'] = np.clip(dfclean['anxietyscore'], lowerbound, upperbound)

print(f"Clipped {noutliersbefore} outliers in anxiety scores (IQR method)")
print(f"Anxiety score range after cleaning: {dfclean['anxietyscore'].min():.1f} - {dfclean['anxietyscore'].max():.1f}")

# Handle age outliers
dfclean = dfclean[(dfclean['age'] >= 16) & (dfclean['age'] <= 30)]
print(f"Filtered age outliers: kept participants aged 16-30 ({len(df_clean)} remaining)")

# Handle missing values
print("\nMissing value summary:")
missingsummary = dfclean.isnull().sum()
print(missingsummary[missingsummary > 0])

# Impute continuous variables with median, categorical with mode
for col in ['anxiety_score', 'gpa']:
if col in df_clean.columns:
medianval = dfclean[col].median()
nmissing = dfclean[col].isnull().sum()
dfclean[col] = dfclean[col].fillna(median_val)
print(f" Imputed {nmissing} missing {col} values with median ({medianval:.1f})")

for col in ['sleep_quality', 'gender', 'year']:
if col in df_clean.columns:
modeval = dfclean[col].mode()[0]
nmissing = dfclean[col].isnull().sum()
dfclean[col] = dfclean[col].fillna(mode_val)
print(f" Imputed {nmissing} missing {col} values with mode ({modeval})")

# Convert sleep_quality to numeric if it's categorical
if dfclean['sleepquality'].dtype == 'object':
dfclean['sleepquality'] = pd.tonumeric(dfclean['sleep_quality'], errors='coerce')

# Create anxiety categories for chi-square analysis
dfclean['anxietycategory'] = pd.cut(dfclean['anxietyscore'],
bins=[-1, 5, 10, 15, 21],
labels=['Minimal', 'Mild', 'Moderate', 'Severe'])

print(f"\nFinal cleaned dataset: {len(df_clean)} participants")
print(f"Missing values after cleaning: {df_clean.isnull().sum().sum()}")

return df_clean

Clean the data


dfclean = cleandata(df)

=============================================================================


2. DESCRIPTIVE STATISTICS


=============================================================================

def descriptive_stats(df):
"""Generate descriptive statistics"""
print("\n" + "="*60)
print("2. DESCRIPTIVE STATISTICS")
print("="*60)

# Overall descriptive statistics
print("\nAnxiety Score Descriptive Statistics:")
descstats = df[['anxietyscore', 'age', 'gpa', 'sleep_quality']].describe()
print(desc_stats.round(2))

# Categorical variable frequencies
print("\nCategorical Variable Frequencies:")
catvars = ['gender', 'year', 'majorstress', 'academicload', 'socialsupport', 'anxiety_category']
for var in cat_vars:
if var in df.columns:
print(f"\n{var}:")
print(df[var].valuecounts().sortindex() if df[var].dtype == 'object' else
df[var].valuecounts().sortindex())

Generate descriptive statistics


descriptivestats(dfclean)

=============================================================================


3. STATISTICAL TESTS WITH ASSUMPTION CHECKING


=============================================================================

def runstatisticaltests(df):
"""Run appropriate statistical tests with assumption checking"""
print("\n" + "="*60)
print("3. STATISTICAL TESTS WITH ASSUMPTION CHECKING")
print("="*60)

results = {}

# 3.1 Independent t-test: Gender differences in anxiety
print("\n3.1 INDEPENDENT T-TEST: Gender differences in anxiety")

# Prepare data (exclude Non-binary due to small sample)
df_ttest = df[df['gender'].isin(['Male', 'Female'])].copy()

maleanxiety = dfttest[dfttest['gender'] == 'Male']['anxietyscore']
femaleanxiety = dfttest[dfttest['gender'] == 'Female']['anxietyscore']

# Assumption 1: Normality (Shapiro-Wilk test)
print(f"\nAssumption Checking:")
shapiromale = shapiro(maleanxiety.dropna())
shapirofemale = shapiro(femaleanxiety.dropna())
print(f"Shapiro-Wilk normality test - Male: W={shapiromale.statistic:.3f}, p={shapiromale.pvalue:.3f}")
print(f"Shapiro-Wilk normality test - Female: W={

{DateTime.UtcNow:HH:mm}

Analysis

This comparison demonstrates the different approaches each AI model takes when responding to the same prompt. Here are the key differences observed:

Response Characteristics

ChatGPT: Provides a direct response with 71 sentences.

Grok: Provides a direct response with 135 sentences.

Key Takeaways

  • Each model brings unique strengths to this type of query
  • Response styles vary significantly between models
  • Consider your specific use case when choosing between these models

Try This Comparison Yourself

Want to test these models with your own prompts? Visit SNEOS.com to compare AI responses side-by-side in real-time.


This comparison was generated using the SNEOS AI Comparison ToolPublished: October 15, 2025 | Models: ChatGPT, Grok